Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279226

RESUMO

Salt stress profoundly affects plant growth, prompting intricate molecular responses, such as alternative splicing (AS), for environmental adaptation. However, the response of AS events to salt stress in Opisthopappus (Opisthopappus taihangensis and Opisthopappus longilobus) remains unclear, which is a Taihang Mountain cliff-dwelling species. Using RNA-seq data, differentially expressed genes (DEGs) were identified under time and concentration gradients of salt stress. Two types of AS, skipped exon (SE) and mutually exclusive exons (MXE), were found. Differentially alternative splicing (DAS) genes in both species were significantly enriched in "protein phosphorylation", "starch and sucrose metabolism", and "plant hormone signal transduction" pathways. Meanwhile, distinct GO terms and KEGG pathways of DAS occurred between two species. Only a small subset of DAS genes overlapped with DEGs under salt stress. Although both species likely adopted protein phosphorylation to enhance salt stress tolerance, they exhibited distinct responses. The results indicated that the salt stress mechanisms of both Opisthopappus species exhibited similarities and differences in response to salt stress, which suggested that adaptive divergence might have occurred between them. This study initially provides a comprehensive description of salt responsive AS events in Opisthopappus and conveys some insights into the molecular mechanisms behind species tolerance on the Taihang Mountains.


Assuntos
Processamento Alternativo , Estresse Salino , Estresse Salino/genética , RNA-Seq , Tolerância ao Sal/genética , Reguladores de Crescimento de Plantas , Regulação da Expressão Gênica de Plantas , Transcriptoma , Perfilação da Expressão Gênica
2.
Small ; : e2309271, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178225

RESUMO

Manganese dioxide (MnO2 ) is an attractive cathode material for aqueous zinc batteries (AZBs) owing to its environmental benignity, low cost, high operating voltage, and high theoretical capacity. However, the severe dissolution of Mn2+ leads to rapid capacity decay. Herein, a self-assembled layer of amino-propyl phosphonic acid (AEPA) on the MnO2 surface, which significantly improves its cycle performance is successfully modified. Specifically, AEPA can be firmly attached to MnO2 through a strong chemical bond, forming a hydrophobic, and uniform organic coating layer with a few nanometers thickness. This coating layer can significantly inhibit the dissolution of Mn2+ by avoiding the direct contact between the electrolyte and cathode, thus enhancing the structural integrity and redox reversibility of MnO2 . As a result, the MnO2 @AEPA cathode achieves a high reversible capacity of 223 mAh g-1 at 0.5 A g-1 and a high capacity retention of 97% after 1700 cycles at 1 A g-1 . This work provides new insights in developing stable Mn-based cathodes for aqueous batteries.

3.
Dalton Trans ; 52(22): 7447-7456, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37194372

RESUMO

Exploring low-cost and highly active photocatalysts with noble metal-free cocatalysts is of great significance for photocatalytic hydrogen evolution under simulated sunlight irradiation. In this work, a novel V-doped Ni2P nanoparticle loaded g-C3N4 nanosheet is reported as a highly efficient photocatalyst for H2 evolution under visible light irradiation. The results demonstrate that the optimized 7.8 wt% V-Ni2P/g-C3N4 photocatalyst exhibits a high hydrogen evolution rate of 271.5 µmol g-1 h-1, which is comparable to that of the 1 wt% Pt/g-C3N4 photocatalyst (279 µmol g-1 h-1), and shows favorable hydrogen evolution stability for five successive runs within 20 h. The remarkable photocatalytic hydrogen evolution performance of V-Ni2P/g-C3N4 is mainly due to the enhanced visible light absorption ability, the facilitated separation of photo-generated electron-hole pairs, the prolonged lifetime of photo-generated carriers and the fast transmission ability of electrons.

4.
Environ Sci Technol ; 56(18): 13131-13141, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36067445

RESUMO

The poor oxidation capacity of the Fe(II)/S2O82- [Fe(II)/PDS] system at pH > 3.0 has limited its wide application in water treatment. To unravel the underlying mechanism, this study systematically evaluated the possible influencing factors over the pH range of 1.0-8.0 and developed a mathematical model to quantify these effects. Results showed that ∼82% of the generated Fe(IV) could be used for pollutant degradation at pH 1.0, whereas negligible Fe(IV) contribution was observed at pH 7.5. This dramatic decline of Fe(IV) contribution with increasing pH dominantly accounted for the pH-dependent performance of the Fe(II)/PDS process. Unexpectedly, Fe(II) could consume ∼80% of the generated SO4•- non-productively under both acidic and near-neutral conditions, while the larger formation of Fe(III) precipitates at high pH inhibited the SO4•- contribution mildly. Moreover, the strong Fe(II) scavenging effect was difficult to be compensated for by slowing down the Fe(II) dosing rate. The competition of dissolved oxygen with PDS for Fe(II) was insignificant at pH ≤ 7.5, where the second-order rate constants for reactions of Fe(II) with oxygen were much lower than or comparable to that between Fe(II) and PDS. These findings could advance our understanding of the chemistry and application of the Fe(II)/PDS process.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Compostos Férricos , Compostos Ferrosos , Concentração de Íons de Hidrogênio , Oxirredução , Oxigênio , Poluentes Químicos da Água/análise
5.
Biomed Res Int ; 2022: 4165839, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36124071

RESUMO

Objective: To observe the improvement effect of aerobic exercise on liver tissue of rats with NAFLD, explore whether it can reduce NAFLD symptoms without drug dependence, and provide certain data support for the relief of NAFLD by aerobic exercise. Methods: 40 healthful male SD rats have been divided into ordinary diet and high-fat diet. To observe whether the molding is forming after 6 weeks, then divide the rats into control (C), model (M), and exercise (E) group. E group received 8-week aerobic exercise intervention. Serum and liver samples were taken and analyzed after the last intervention. Results: The morphological of hepatocytes between C and M group becomes different, and the accumulation of fat and inflammatory cells was significant, suggesting that NAFLD symptoms appeared, that is, the model was successfully established. Compared with M group, the morphology of rats in E group was improved in varying degrees. The quantity of ALT, AST, and MDA of rats in M group is increased, and the SOD activity is significantly reduced (P < 0.01). However, aerobic exercise intervention changed those result (P < 0.01). Conclusions: Aerobic exercise can relieve oxidative stress damage, lipid peroxidation levels, and chronic inflammatory status in rats with NAFLD, which can reduce NAFLD symptoms without drug dependence, and is expected to become a means of NAFLD treatment.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica , Masculino , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase
6.
Molecules ; 27(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144696

RESUMO

Metal sulfide electrocatalyst is developed as a cost-effective and promising candidate for hydrogen evolution reaction (HER). In this work, we report a novel Mo-doped Cu2S self-supported electrocatalyst grown in situ on three-dimensional copper foam via a facile sulfurization treatment method. Interestingly, Mo-Cu2S nanosheet structure increases the electrochemically active area, and the large fleecy multilayer flower structure assembled by small nanosheet facilitates the flow of electrolyte in and out. More broadly, the introduction of Mo can adjust the electronic structure, significantly increase the volmer step rate, and accelerate the reaction kinetics. As compared to the pure Cu2S self-supported electrocatalyst, the Mo-Cu2S/CF show much better alkaline HER performance with lower overpotential (18 mV at 10 mA cm-2, 322 mV at 100 mA cm-2) and long-term durability. Our work constructs a novel copper based in-situ metal sulfide electrocatalysts and provides a new idea to adjust the morphology and electronic structure by doping for promoting HER performance.

7.
Front Genet ; 13: 901827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783288

RESUMO

This work aimed to study the intervention effect of exercise on lipid metabolism in NAFLD rats, provide a more scientific experimental basis for exploring and improving the theoretical system of exercise intervention in NAFLD, and further provide a theoretical research basis for clinical treatment of NAFLD. Forty healthy male Sprague Dawley rats were randomly divided into a blank control group (BC,14) and a model group (MO, 26). After 6°weeks of modeling, the MO group was randomly divided into the model control group (MC, 12) and the aerobic exercise group (AE, 12). Platform running intervention in group E was conducted at a slope of 0°, a speed of 15 m/min, 1 h/time, once a day, six times a week, and a day of rest, for 8°weeks in total. After the intervention, the liver tissues of rats were taken for pathological sections, and serum was taken and analyzed for TC, TG, LDL-C, HDL-C, and FFA levels. Under the light microscope, the liver tissue structure of rats in the BC group was complete and clear, the structure of liver lobules was clear and normal, the volume of hepatocytes was uniform, the nucleus was in the middle, and the cytoplasm was red-stained, and no steatosis of hepatocytes was found. The liver of rats in the MC group showed diffuse fatty lesions, disordered structure of hepatic lobules, disordered arrangement of hepatic cords, different sizes of hepatocytes, loose cytoplasm, and diffuse lipid droplets of different sizes in the cytoplasm. The accumulation of liver lipid droplets in the AE group was improved compared with the MC group, the number of fat vacuoles in hepatocytes was significantly reduced, and the degree of liver lipid deposition was reduced. Compared with the BC group, the content of TC, TG, LDL-C, and FFA in the serum of the MC group increased significantly (p < 0.01), and the content of HDL-C decreased significantly (p < 0.01). Compared with the MC group, the content of TC, TG, LDL-C, and FFA in the serum of the AE group decreased significantly (p < 0.01/p < 0.05), and the content of HDL-C increased significantly (p < 0.01). Therefore, moderate-intensity aerobic exercise has an intervention effect on lipid metabolism in NAFLD rats, which can be used as one of the means to treat NAFLD.

8.
Dalton Trans ; 51(18): 7234-7240, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35471498

RESUMO

The synergistic effect of a highly active surface/interface and an optimized electronic structure of electrocatalysts is of great significance to improve the performance of the hydrogen evolution reaction. Herein, a superhydrophilic core@shell heterostructure nanorod-integrated electrode composed of an amorphous VOx nanoshell (3-7 nm) and a crystalline Ni3S2 core supported on Ni foam (CS-NS/NF) was prepared by an in situ conversion method. We prove that the amorphous VOx not only helps to kinetically decouple the adsorption/dissociation of hydroxyl/water, but also enriches the active sites, thereby significantly enhancing the electron transfer efficiency and electrocatalytic activity toward the hydrogen evolution reaction (HER). The optimized CS-NS/NF has excellent hydrogen production performance, with overpotentials of 335 and 394 mV at current densities of 500 and 1000 mA cm-2, respectively, as well as superior durability for over 68 h in 1 M KOH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...